With CBSE Class 12 Board Exam 2025 approaching fast, students must be looking for the accurate NCERT solutions. In this ...
Cylindrical and spherical coordinates, double and triple integrals, line and surface integrals. Change of variables in multiple integrals; gradient, divergence, and ...
We mentioned before about the \(+ c\) term. We are now going to look at how to find the value of \(c\) when additional information is given in the question.
Serves as a first course in calculus. Functions, limits, continuity, derivatives, rules for differentiation of algebraic and transcendental function; chain rule, implicit differentiation, related rate ...
Although calculus has a reputation of being tough ... the derivative of that function describes the rate of change at any point. The integral describes the area under the curve of the function.
Type in a function, it will tell you lots of things about it (yes, including it's derivative and indefinite integral). This site only launched 1.5 years ago and I put this link here as yet another ...
Polynomial integration is a fundamental principle in calculus with numerous applications in various fields like engineering, ...
This can solve differential equations and evaluate definite integrals. Applying differential calculus Optimization is used to find the greatest/least value(s) a function can take. This can involve ...
Serves as a continuation of Calculus I. Integration and techniques of integration including the substitution method, integration by parts, trigonometric integrals, trigonometric substitution, ...
Laughing Squid on MSN8 个月
Calculus Explained in Very Simple Terms
He explained such concepts as the fundamental theorem of calculus, derivatives, integration, and Gabriel’s Horn at a 5th ...